Metamath Proof Explorer


Theorem nn0ind

Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004)

Ref Expression
Hypotheses nn0ind.1 x = 0 φ ψ
nn0ind.2 x = y φ χ
nn0ind.3 x = y + 1 φ θ
nn0ind.4 x = A φ τ
nn0ind.5 ψ
nn0ind.6 y 0 χ θ
Assertion nn0ind A 0 τ

Proof

Step Hyp Ref Expression
1 nn0ind.1 x = 0 φ ψ
2 nn0ind.2 x = y φ χ
3 nn0ind.3 x = y + 1 φ θ
4 nn0ind.4 x = A φ τ
5 nn0ind.5 ψ
6 nn0ind.6 y 0 χ θ
7 elnn0z A 0 A 0 A
8 0z 0
9 5 a1i 0 ψ
10 elnn0z y 0 y 0 y
11 10 6 sylbir y 0 y χ θ
12 11 3adant1 0 y 0 y χ θ
13 1 2 3 4 9 12 uzind 0 A 0 A τ
14 8 13 mp3an1 A 0 A τ
15 7 14 sylbi A 0 τ