Metamath Proof Explorer


Theorem nn0indd

Description: Principle of Mathematical Induction (inference schema) on nonnegative integers, a deduction version. (Contributed by Thierry Arnoux, 23-Mar-2018)

Ref Expression
Hypotheses nn0indd.1 x = 0 ψ χ
nn0indd.2 x = y ψ θ
nn0indd.3 x = y + 1 ψ τ
nn0indd.4 x = A ψ η
nn0indd.5 φ χ
nn0indd.6 φ y 0 θ τ
Assertion nn0indd φ A 0 η

Proof

Step Hyp Ref Expression
1 nn0indd.1 x = 0 ψ χ
2 nn0indd.2 x = y ψ θ
3 nn0indd.3 x = y + 1 ψ τ
4 nn0indd.4 x = A ψ η
5 nn0indd.5 φ χ
6 nn0indd.6 φ y 0 θ τ
7 1 imbi2d x = 0 φ ψ φ χ
8 2 imbi2d x = y φ ψ φ θ
9 3 imbi2d x = y + 1 φ ψ φ τ
10 4 imbi2d x = A φ ψ φ η
11 6 ex φ y 0 θ τ
12 11 expcom y 0 φ θ τ
13 12 a2d y 0 φ θ φ τ
14 7 8 9 10 5 13 nn0ind A 0 φ η
15 14 impcom φ A 0 η