Metamath Proof Explorer


Theorem nn0le2is012

Description: A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019)

Ref Expression
Assertion nn0le2is012 N0N2N=0N=1N=2

Proof

Step Hyp Ref Expression
1 nn0re N0N
2 2re 2
3 2 a1i N02
4 1 3 leloed N0N2N<2N=2
5 nn0z N0N
6 2z 2
7 zltlem1 N2N<2N21
8 5 6 7 sylancl N0N<2N21
9 2m1e1 21=1
10 9 a1i N021=1
11 10 breq2d N0N21N1
12 8 11 bitrd N0N<2N1
13 1red N01
14 1 13 leloed N0N1N<1N=1
15 nn0lt10b N0N<1N=0
16 3mix1 N=0N=0N=1N=2
17 15 16 biimtrdi N0N<1N=0N=1N=2
18 17 com12 N<1N0N=0N=1N=2
19 3mix2 N=1N=0N=1N=2
20 19 a1d N=1N0N=0N=1N=2
21 18 20 jaoi N<1N=1N0N=0N=1N=2
22 21 com12 N0N<1N=1N=0N=1N=2
23 14 22 sylbid N0N1N=0N=1N=2
24 12 23 sylbid N0N<2N=0N=1N=2
25 24 com12 N<2N0N=0N=1N=2
26 3mix3 N=2N=0N=1N=2
27 26 a1d N=2N0N=0N=1N=2
28 25 27 jaoi N<2N=2N0N=0N=1N=2
29 28 com12 N0N<2N=2N=0N=1N=2
30 4 29 sylbid N0N2N=0N=1N=2
31 30 imp N0N2N=0N=1N=2