Metamath Proof Explorer


Theorem nn0le2msqi

Description: The square function on nonnegative integers is monotonic. (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Hypotheses nn0le2msqi.1 A 0
nn0le2msqi.2 B 0
Assertion nn0le2msqi A B A A B B

Proof

Step Hyp Ref Expression
1 nn0le2msqi.1 A 0
2 nn0le2msqi.2 B 0
3 1 nn0ge0i 0 A
4 2 nn0ge0i 0 B
5 1 nn0rei A
6 2 nn0rei B
7 5 6 le2sqi 0 A 0 B A B A 2 B 2
8 3 4 7 mp2an A B A 2 B 2
9 1 nn0cni A
10 9 sqvali A 2 = A A
11 2 nn0cni B
12 11 sqvali B 2 = B B
13 10 12 breq12i A 2 B 2 A A B B
14 8 13 bitri A B A A B B