Metamath Proof Explorer


Theorem nn0le2xi

Description: A nonnegative integer is less than or equal to twice itself. (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Hypothesis nn0le2xi.1 N 0
Assertion nn0le2xi N 2 N

Proof

Step Hyp Ref Expression
1 nn0le2xi.1 N 0
2 1 nn0rei N
3 2 1 nn0addge1i N N + N
4 1 nn0cni N
5 4 2timesi 2 N = N + N
6 3 5 breqtrri N 2 N