Metamath Proof Explorer


Theorem nn0ledivnn

Description: Division of a nonnegative integer by a positive integer is less than or equal to the integer. (Contributed by AV, 19-Jun-2021)

Ref Expression
Assertion nn0ledivnn A 0 B A B A

Proof

Step Hyp Ref Expression
1 elnn0 A 0 A A = 0
2 nnge1 B 1 B
3 2 adantl A B 1 B
4 nnrp B B +
5 nnledivrp A B + 1 B A B A
6 4 5 sylan2 A B 1 B A B A
7 3 6 mpbid A B A B A
8 7 ex A B A B A
9 nncn B B
10 nnne0 B B 0
11 9 10 jca B B B 0
12 11 adantl A = 0 B B B 0
13 div0 B B 0 0 B = 0
14 12 13 syl A = 0 B 0 B = 0
15 0le0 0 0
16 14 15 eqbrtrdi A = 0 B 0 B 0
17 oveq1 A = 0 A B = 0 B
18 id A = 0 A = 0
19 17 18 breq12d A = 0 A B A 0 B 0
20 19 adantr A = 0 B A B A 0 B 0
21 16 20 mpbird A = 0 B A B A
22 21 ex A = 0 B A B A
23 8 22 jaoi A A = 0 B A B A
24 1 23 sylbi A 0 B A B A
25 24 imp A 0 B A B A