Metamath Proof Explorer
		
		
		
		Description:  'Less than or equal to' implies 'less than or equal to twice' for
       nonnegative integers.  (Contributed by Raph Levien, 10-Dec-2002)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | nn0lele2xi.1 |  | 
					
						|  |  | nn0lele2xi.2 |  | 
				
					|  | Assertion | nn0lele2xi |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0lele2xi.1 |  | 
						
							| 2 |  | nn0lele2xi.2 |  | 
						
							| 3 | 1 | nn0le2xi |  | 
						
							| 4 | 2 | nn0rei |  | 
						
							| 5 | 1 | nn0rei |  | 
						
							| 6 |  | 2re |  | 
						
							| 7 | 6 5 | remulcli |  | 
						
							| 8 | 4 5 7 | letri |  | 
						
							| 9 | 3 8 | mpan2 |  |