Metamath Proof Explorer


Theorem nn0lele2xi

Description: 'Less than or equal to' implies 'less than or equal to twice' for nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Hypotheses nn0lele2xi.1 M 0
nn0lele2xi.2 N 0
Assertion nn0lele2xi N M N 2 M

Proof

Step Hyp Ref Expression
1 nn0lele2xi.1 M 0
2 nn0lele2xi.2 N 0
3 1 nn0le2xi M 2 M
4 2 nn0rei N
5 1 nn0rei M
6 2re 2
7 6 5 remulcli 2 M
8 4 5 7 letri N M M 2 M N 2 M
9 3 8 mpan2 N M N 2 M