Database
REAL AND COMPLEX NUMBERS
Integer sets
Integers (as a subset of complex numbers)
nn0lem1lt
Next ⟩
nnlem1lt
Metamath Proof Explorer
Ascii
Unicode
Theorem
nn0lem1lt
Description:
Nonnegative integer ordering relation.
(Contributed by
NM
, 21-Jun-2005)
Ref
Expression
Assertion
nn0lem1lt
⊢
M
∈
ℕ
0
∧
N
∈
ℕ
0
→
M
≤
N
↔
M
−
1
<
N
Proof
Step
Hyp
Ref
Expression
1
nn0z
⊢
M
∈
ℕ
0
→
M
∈
ℤ
2
nn0z
⊢
N
∈
ℕ
0
→
N
∈
ℤ
3
zlem1lt
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
≤
N
↔
M
−
1
<
N
4
1
2
3
syl2an
⊢
M
∈
ℕ
0
∧
N
∈
ℕ
0
→
M
≤
N
↔
M
−
1
<
N