Metamath Proof Explorer


Theorem nn0ltp1le

Description: Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Dec-2002) (Proof shortened by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion nn0ltp1le M 0 N 0 M < N M + 1 N

Proof

Step Hyp Ref Expression
1 nn0z M 0 M
2 nn0z N 0 N
3 zltp1le M N M < N M + 1 N
4 1 2 3 syl2an M 0 N 0 M < N M + 1 N