Metamath Proof Explorer


Theorem nn0mulcl

Description: Closure of multiplication of nonnegative integers. (Contributed by NM, 22-Jul-2004) (Proof shortened by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion nn0mulcl M 0 N 0 M N 0

Proof

Step Hyp Ref Expression
1 nnsscn
2 id
3 df-n0 0 = 0
4 nnmulcl M N M N
5 4 adantl M N M N
6 2 3 5 un0mulcl M 0 N 0 M N 0
7 1 6 mpan M 0 N 0 M N 0