Metamath Proof Explorer


Theorem nn0n0n1ge2

Description: A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017)

Ref Expression
Assertion nn0n0n1ge2 N 0 N 0 N 1 2 N

Proof

Step Hyp Ref Expression
1 nn0cn N 0 N
2 1cnd N 0 1
3 1 2 2 subsub4d N 0 N - 1 - 1 = N 1 + 1
4 1p1e2 1 + 1 = 2
5 4 oveq2i N 1 + 1 = N 2
6 3 5 eqtr2di N 0 N 2 = N - 1 - 1
7 6 3ad2ant1 N 0 N 0 N 1 N 2 = N - 1 - 1
8 3simpa N 0 N 0 N 1 N 0 N 0
9 elnnne0 N N 0 N 0
10 8 9 sylibr N 0 N 0 N 1 N
11 nnm1nn0 N N 1 0
12 10 11 syl N 0 N 0 N 1 N 1 0
13 1 2 subeq0ad N 0 N 1 = 0 N = 1
14 13 biimpd N 0 N 1 = 0 N = 1
15 14 necon3d N 0 N 1 N 1 0
16 15 imp N 0 N 1 N 1 0
17 16 3adant2 N 0 N 0 N 1 N 1 0
18 elnnne0 N 1 N 1 0 N 1 0
19 12 17 18 sylanbrc N 0 N 0 N 1 N 1
20 nnm1nn0 N 1 N - 1 - 1 0
21 19 20 syl N 0 N 0 N 1 N - 1 - 1 0
22 7 21 eqeltrd N 0 N 0 N 1 N 2 0
23 2nn0 2 0
24 23 jctl N 0 2 0 N 0
25 24 3ad2ant1 N 0 N 0 N 1 2 0 N 0
26 nn0sub 2 0 N 0 2 N N 2 0
27 25 26 syl N 0 N 0 N 1 2 N N 2 0
28 22 27 mpbird N 0 N 0 N 1 2 N