Metamath Proof Explorer


Theorem nn0n0n1ge2b

Description: A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018)

Ref Expression
Assertion nn0n0n1ge2b N 0 N 0 N 1 2 N

Proof

Step Hyp Ref Expression
1 nn0n0n1ge2 N 0 N 0 N 1 2 N
2 1 3expib N 0 N 0 N 1 2 N
3 ianor ¬ N 0 N 1 ¬ N 0 ¬ N 1
4 nne ¬ N 0 N = 0
5 nne ¬ N 1 N = 1
6 4 5 orbi12i ¬ N 0 ¬ N 1 N = 0 N = 1
7 3 6 bitri ¬ N 0 N 1 N = 0 N = 1
8 2pos 0 < 2
9 breq1 N = 0 N < 2 0 < 2
10 8 9 mpbiri N = 0 N < 2
11 10 a1d N = 0 N 0 N < 2
12 1lt2 1 < 2
13 breq1 N = 1 N < 2 1 < 2
14 12 13 mpbiri N = 1 N < 2
15 14 a1d N = 1 N 0 N < 2
16 11 15 jaoi N = 0 N = 1 N 0 N < 2
17 16 impcom N 0 N = 0 N = 1 N < 2
18 nn0re N 0 N
19 2re 2
20 18 19 jctir N 0 N 2
21 20 adantr N 0 N = 0 N = 1 N 2
22 ltnle N 2 N < 2 ¬ 2 N
23 21 22 syl N 0 N = 0 N = 1 N < 2 ¬ 2 N
24 17 23 mpbid N 0 N = 0 N = 1 ¬ 2 N
25 24 ex N 0 N = 0 N = 1 ¬ 2 N
26 7 25 syl5bi N 0 ¬ N 0 N 1 ¬ 2 N
27 2 26 impcon4bid N 0 N 0 N 1 2 N