Database
REAL AND COMPLEX NUMBERS
Integer sets
Integers (as a subset of complex numbers)
nn0negz
Next ⟩
nn0negzi
Metamath Proof Explorer
Ascii
Unicode
Theorem
nn0negz
Description:
The negative of a nonnegative integer is an integer.
(Contributed by
NM
, 9-May-2004)
Ref
Expression
Assertion
nn0negz
⊢
N
∈
ℕ
0
→
−
N
∈
ℤ
Proof
Step
Hyp
Ref
Expression
1
nn0z
⊢
N
∈
ℕ
0
→
N
∈
ℤ
2
znegcl
⊢
N
∈
ℤ
→
−
N
∈
ℤ
3
1
2
syl
⊢
N
∈
ℕ
0
→
−
N
∈
ℤ