Metamath Proof Explorer


Theorem nn0nnaddcl

Description: A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005)

Ref Expression
Assertion nn0nnaddcl M 0 N M + N

Proof

Step Hyp Ref Expression
1 nncn N N
2 nn0cn M 0 M
3 addcom N M N + M = M + N
4 1 2 3 syl2an N M 0 N + M = M + N
5 nnnn0addcl N M 0 N + M
6 4 5 eqeltrrd N M 0 M + N
7 6 ancoms M 0 N M + N