Metamath Proof Explorer


Theorem nn0nndivcl

Description: Closure law for dividing of a nonnegative integer by a positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018)

Ref Expression
Assertion nn0nndivcl K 0 L K L

Proof

Step Hyp Ref Expression
1 elnnne0 L L 0 L 0
2 nn0re K 0 K
3 2 adantr K 0 L 0 L 0 K
4 nn0re L 0 L
5 4 ad2antrl K 0 L 0 L 0 L
6 simprr K 0 L 0 L 0 L 0
7 3 5 6 3jca K 0 L 0 L 0 K L L 0
8 1 7 sylan2b K 0 L K L L 0
9 redivcl K L L 0 K L
10 8 9 syl K 0 L K L