Metamath Proof Explorer


Theorem nn0oALTV

Description: An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020) (Revised by AV, 21-Jun-2020)

Ref Expression
Assertion nn0oALTV N 0 N Odd N 1 2 0

Proof

Step Hyp Ref Expression
1 oddm1div2z N Odd N 1 2
2 1 adantl N 0 N Odd N 1 2
3 elnn0 N 0 N N = 0
4 nnm1ge0 N 0 N 1
5 nnre N N
6 peano2rem N N 1
7 5 6 syl N N 1
8 2re 2
9 8 a1i N 2
10 2pos 0 < 2
11 10 a1i N 0 < 2
12 ge0div N 1 2 0 < 2 0 N 1 0 N 1 2
13 7 9 11 12 syl3anc N 0 N 1 0 N 1 2
14 4 13 mpbid N 0 N 1 2
15 14 a1d N N Odd 0 N 1 2
16 eleq1 N = 0 N Odd 0 Odd
17 0noddALTV 0 Odd
18 df-nel 0 Odd ¬ 0 Odd
19 pm2.21 ¬ 0 Odd 0 Odd 0 N 1 2
20 18 19 sylbi 0 Odd 0 Odd 0 N 1 2
21 17 20 ax-mp 0 Odd 0 N 1 2
22 16 21 syl6bi N = 0 N Odd 0 N 1 2
23 15 22 jaoi N N = 0 N Odd 0 N 1 2
24 3 23 sylbi N 0 N Odd 0 N 1 2
25 24 imp N 0 N Odd 0 N 1 2
26 elnn0z N 1 2 0 N 1 2 0 N 1 2
27 2 25 26 sylanbrc N 0 N Odd N 1 2 0