Metamath Proof Explorer


Theorem nn0ob

Description: Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020)

Ref Expression
Assertion nn0ob N 0 N + 1 2 0 N 1 2 0

Proof

Step Hyp Ref Expression
1 nn0o N 0 N + 1 2 0 N 1 2 0
2 nn0cn N 0 N
3 xp1d2m1eqxm1d2 N N + 1 2 1 = N 1 2
4 3 eqcomd N N 1 2 = N + 1 2 1
5 2 4 syl N 0 N 1 2 = N + 1 2 1
6 peano2cnm N N 1
7 2 6 syl N 0 N 1
8 7 halfcld N 0 N 1 2
9 1cnd N 0 1
10 peano2nn0 N 0 N + 1 0
11 10 nn0cnd N 0 N + 1
12 11 halfcld N 0 N + 1 2
13 8 9 12 addlsub N 0 N 1 2 + 1 = N + 1 2 N 1 2 = N + 1 2 1
14 5 13 mpbird N 0 N 1 2 + 1 = N + 1 2
15 14 adantr N 0 N 1 2 0 N 1 2 + 1 = N + 1 2
16 peano2nn0 N 1 2 0 N 1 2 + 1 0
17 16 adantl N 0 N 1 2 0 N 1 2 + 1 0
18 15 17 eqeltrrd N 0 N 1 2 0 N + 1 2 0
19 1 18 impbida N 0 N + 1 2 0 N 1 2 0