Metamath Proof Explorer


Theorem nn0oddm1d2

Description: A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021) (Proof shortened by AV, 10-Jul-2022)

Ref Expression
Assertion nn0oddm1d2 N 0 ¬ 2 N N 1 2 0

Proof

Step Hyp Ref Expression
1 nn0z N 0 N
2 oddp1d2 N ¬ 2 N N + 1 2
3 1 2 syl N 0 ¬ 2 N N + 1 2
4 peano2nn0 N 0 N + 1 0
5 4 nn0red N 0 N + 1
6 2rp 2 +
7 6 a1i N 0 2 +
8 nn0re N 0 N
9 1red N 0 1
10 nn0ge0 N 0 0 N
11 0le1 0 1
12 11 a1i N 0 0 1
13 8 9 10 12 addge0d N 0 0 N + 1
14 5 7 13 divge0d N 0 0 N + 1 2
15 14 anim1ci N 0 N + 1 2 N + 1 2 0 N + 1 2
16 elnn0z N + 1 2 0 N + 1 2 0 N + 1 2
17 15 16 sylibr N 0 N + 1 2 N + 1 2 0
18 17 ex N 0 N + 1 2 N + 1 2 0
19 nn0z N + 1 2 0 N + 1 2
20 18 19 impbid1 N 0 N + 1 2 N + 1 2 0
21 nn0ob N 0 N + 1 2 0 N 1 2 0
22 3 20 21 3bitrd N 0 ¬ 2 N N 1 2 0