Metamath Proof Explorer


Theorem nn0onn

Description: An odd nonnegative integer is positive. (Contributed by Steven Nguyen, 25-Mar-2023)

Ref Expression
Assertion nn0onn N 0 ¬ 2 N N

Proof

Step Hyp Ref Expression
1 z0even 2 0
2 breq2 N = 0 2 N 2 0
3 1 2 mpbiri N = 0 2 N
4 3 necon3bi ¬ 2 N N 0
5 4 anim2i N 0 ¬ 2 N N 0 N 0
6 elnnne0 N N 0 N 0
7 5 6 sylibr N 0 ¬ 2 N N