Metamath Proof Explorer


Theorem nn0opth2i

Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of Quine p. 124. See comments for nn0opthi . (Contributed by NM, 22-Jul-2004)

Ref Expression
Hypotheses nn0opth.1 A 0
nn0opth.2 B 0
nn0opth.3 C 0
nn0opth.4 D 0
Assertion nn0opth2i A + B 2 + B = C + D 2 + D A = C B = D

Proof

Step Hyp Ref Expression
1 nn0opth.1 A 0
2 nn0opth.2 B 0
3 nn0opth.3 C 0
4 nn0opth.4 D 0
5 1 nn0cni A
6 2 nn0cni B
7 5 6 addcli A + B
8 7 sqvali A + B 2 = A + B A + B
9 8 oveq1i A + B 2 + B = A + B A + B + B
10 3 nn0cni C
11 4 nn0cni D
12 10 11 addcli C + D
13 12 sqvali C + D 2 = C + D C + D
14 13 oveq1i C + D 2 + D = C + D C + D + D
15 9 14 eqeq12i A + B 2 + B = C + D 2 + D A + B A + B + B = C + D C + D + D
16 1 2 3 4 nn0opthi A + B A + B + B = C + D C + D + D A = C B = D
17 15 16 bitri A + B 2 + B = C + D 2 + D A = C B = D