Step |
Hyp |
Ref |
Expression |
1 |
|
nn0opth.1 |
|
2 |
|
nn0opth.2 |
|
3 |
|
nn0opth.3 |
|
4 |
|
nn0opth.4 |
|
5 |
1 2
|
nn0addcli |
|
6 |
5
|
nn0rei |
|
7 |
3 4
|
nn0addcli |
|
8 |
7
|
nn0rei |
|
9 |
6 8
|
lttri2i |
|
10 |
1 2 7 4
|
nn0opthlem2 |
|
11 |
10
|
necomd |
|
12 |
3 4 5 2
|
nn0opthlem2 |
|
13 |
11 12
|
jaoi |
|
14 |
9 13
|
sylbi |
|
15 |
14
|
necon4i |
|
16 |
|
id |
|
17 |
15 15
|
oveq12d |
|
18 |
17
|
oveq1d |
|
19 |
16 18
|
eqtr4d |
|
20 |
5
|
nn0cni |
|
21 |
20 20
|
mulcli |
|
22 |
2
|
nn0cni |
|
23 |
4
|
nn0cni |
|
24 |
21 22 23
|
addcani |
|
25 |
19 24
|
sylib |
|
26 |
25
|
oveq2d |
|
27 |
15 26
|
eqtr4d |
|
28 |
1
|
nn0cni |
|
29 |
3
|
nn0cni |
|
30 |
28 29 22
|
addcan2i |
|
31 |
27 30
|
sylib |
|
32 |
31 25
|
jca |
|
33 |
|
oveq12 |
|
34 |
33 33
|
oveq12d |
|
35 |
|
simpr |
|
36 |
34 35
|
oveq12d |
|
37 |
32 36
|
impbii |
|