Metamath Proof Explorer


Theorem nn0opthlem1

Description: A rather pretty lemma for nn0opthi . (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Hypotheses nn0opthlem1.1 A 0
nn0opthlem1.2 C 0
Assertion nn0opthlem1 A < C A A + 2 A < C C

Proof

Step Hyp Ref Expression
1 nn0opthlem1.1 A 0
2 nn0opthlem1.2 C 0
3 1nn0 1 0
4 1 3 nn0addcli A + 1 0
5 4 2 nn0le2msqi A + 1 C A + 1 A + 1 C C
6 nn0ltp1le A 0 C 0 A < C A + 1 C
7 1 2 6 mp2an A < C A + 1 C
8 1 1 nn0mulcli A A 0
9 2nn0 2 0
10 9 1 nn0mulcli 2 A 0
11 8 10 nn0addcli A A + 2 A 0
12 2 2 nn0mulcli C C 0
13 nn0ltp1le A A + 2 A 0 C C 0 A A + 2 A < C C A A + 2 A + 1 C C
14 11 12 13 mp2an A A + 2 A < C C A A + 2 A + 1 C C
15 1 nn0cni A
16 ax-1cn 1
17 15 16 binom2i A + 1 2 = A 2 + 2 A 1 + 1 2
18 15 16 addcli A + 1
19 18 sqvali A + 1 2 = A + 1 A + 1
20 15 sqvali A 2 = A A
21 20 oveq1i A 2 + 2 A 1 = A A + 2 A 1
22 16 sqvali 1 2 = 1 1
23 21 22 oveq12i A 2 + 2 A 1 + 1 2 = A A + 2 A 1 + 1 1
24 17 19 23 3eqtr3i A + 1 A + 1 = A A + 2 A 1 + 1 1
25 15 mulid1i A 1 = A
26 25 oveq2i 2 A 1 = 2 A
27 26 oveq2i A A + 2 A 1 = A A + 2 A
28 16 mulid1i 1 1 = 1
29 27 28 oveq12i A A + 2 A 1 + 1 1 = A A + 2 A + 1
30 24 29 eqtri A + 1 A + 1 = A A + 2 A + 1
31 30 breq1i A + 1 A + 1 C C A A + 2 A + 1 C C
32 14 31 bitr4i A A + 2 A < C C A + 1 A + 1 C C
33 5 7 32 3bitr4i A < C A A + 2 A < C C