Metamath Proof Explorer


Theorem nn0opthlem2

Description: Lemma for nn0opthi . (Contributed by Raph Levien, 10-Dec-2002) (Revised by Scott Fenton, 8-Sep-2010)

Ref Expression
Hypotheses nn0opth.1 A 0
nn0opth.2 B 0
nn0opth.3 C 0
nn0opth.4 D 0
Assertion nn0opthlem2 A + B < C C C + D A + B A + B + B

Proof

Step Hyp Ref Expression
1 nn0opth.1 A 0
2 nn0opth.2 B 0
3 nn0opth.3 C 0
4 nn0opth.4 D 0
5 1 2 nn0addcli A + B 0
6 5 3 nn0opthlem1 A + B < C A + B A + B + 2 A + B < C C
7 2 nn0rei B
8 7 1 nn0addge2i B A + B
9 5 2 nn0lele2xi B A + B B 2 A + B
10 2re 2
11 5 nn0rei A + B
12 10 11 remulcli 2 A + B
13 11 11 remulcli A + B A + B
14 7 12 13 leadd2i B 2 A + B A + B A + B + B A + B A + B + 2 A + B
15 9 14 sylib B A + B A + B A + B + B A + B A + B + 2 A + B
16 8 15 ax-mp A + B A + B + B A + B A + B + 2 A + B
17 13 7 readdcli A + B A + B + B
18 13 12 readdcli A + B A + B + 2 A + B
19 3 nn0rei C
20 19 19 remulcli C C
21 17 18 20 lelttri A + B A + B + B A + B A + B + 2 A + B A + B A + B + 2 A + B < C C A + B A + B + B < C C
22 16 21 mpan A + B A + B + 2 A + B < C C A + B A + B + B < C C
23 6 22 sylbi A + B < C A + B A + B + B < C C
24 20 4 nn0addge1i C C C C + D
25 4 nn0rei D
26 20 25 readdcli C C + D
27 17 20 26 ltletri A + B A + B + B < C C C C C C + D A + B A + B + B < C C + D
28 24 27 mpan2 A + B A + B + B < C C A + B A + B + B < C C + D
29 17 26 ltnei A + B A + B + B < C C + D C C + D A + B A + B + B
30 23 28 29 3syl A + B < C C C + D A + B A + B + B