Description: Lemma for nn0opthi . (Contributed by Raph Levien, 10-Dec-2002) (Revised by Scott Fenton, 8-Sep-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0opth.1 | |
|
| nn0opth.2 | |
||
| nn0opth.3 | |
||
| nn0opth.4 | |
||
| Assertion | nn0opthlem2 | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0opth.1 | |
|
| 2 | nn0opth.2 | |
|
| 3 | nn0opth.3 | |
|
| 4 | nn0opth.4 | |
|
| 5 | 1 2 | nn0addcli | |
| 6 | 5 3 | nn0opthlem1 | |
| 7 | 2 | nn0rei | |
| 8 | 7 1 | nn0addge2i | |
| 9 | 5 2 | nn0lele2xi | |
| 10 | 2re | |
|
| 11 | 5 | nn0rei | |
| 12 | 10 11 | remulcli | |
| 13 | 11 11 | remulcli | |
| 14 | 7 12 13 | leadd2i | |
| 15 | 9 14 | sylib | |
| 16 | 8 15 | ax-mp | |
| 17 | 13 7 | readdcli | |
| 18 | 13 12 | readdcli | |
| 19 | 3 | nn0rei | |
| 20 | 19 19 | remulcli | |
| 21 | 17 18 20 | lelttri | |
| 22 | 16 21 | mpan | |
| 23 | 6 22 | sylbi | |
| 24 | 20 4 | nn0addge1i | |
| 25 | 4 | nn0rei | |
| 26 | 20 25 | readdcli | |
| 27 | 17 20 26 | ltletri | |
| 28 | 24 27 | mpan2 | |
| 29 | 17 26 | ltnei | |
| 30 | 23 28 29 | 3syl | |