Metamath Proof Explorer


Theorem nn0p1elfzo

Description: A nonnegative integer increased by 1 which is less than or equal to another integer is an element of a half-open range of integers. (Contributed by AV, 27-Feb-2021)

Ref Expression
Assertion nn0p1elfzo K 0 N 0 K + 1 N K 0 ..^ N

Proof

Step Hyp Ref Expression
1 nn0ltp1le K 0 N 0 K < N K + 1 N
2 1 biimp3ar K 0 N 0 K + 1 N K < N
3 simpl1 K 0 N 0 K + 1 N K < N K 0
4 simpr K 0 N 0 N 0
5 4 adantr K 0 N 0 K < N N 0
6 nn0ge0 K 0 0 K
7 6 adantr K 0 N 0 0 K
8 0re 0
9 nn0re K 0 K
10 nn0re N 0 N
11 lelttr 0 K N 0 K K < N 0 < N
12 8 9 10 11 mp3an3an K 0 N 0 0 K K < N 0 < N
13 7 12 mpand K 0 N 0 K < N 0 < N
14 13 imp K 0 N 0 K < N 0 < N
15 elnnnn0b N N 0 0 < N
16 5 14 15 sylanbrc K 0 N 0 K < N N
17 16 3adantl3 K 0 N 0 K + 1 N K < N N
18 simpr K 0 N 0 K + 1 N K < N K < N
19 3 17 18 3jca K 0 N 0 K + 1 N K < N K 0 N K < N
20 2 19 mpdan K 0 N 0 K + 1 N K 0 N K < N
21 elfzo0 K 0 ..^ N K 0 N K < N
22 20 21 sylibr K 0 N 0 K + 1 N K 0 ..^ N