Metamath Proof Explorer


Theorem nn0pzuz

Description: The sum of a nonnegative integer and an integer is an integer greater than or equal to that integer. (Contributed by Alexander van der Vekens, 3-Oct-2018)

Ref Expression
Assertion nn0pzuz N 0 Z N + Z Z

Proof

Step Hyp Ref Expression
1 simpr N 0 Z Z
2 nn0z N 0 N
3 zaddcl N Z N + Z
4 2 3 sylan N 0 Z N + Z
5 zre Z Z
6 nn0addge2 Z N 0 Z N + Z
7 5 6 sylan Z N 0 Z N + Z
8 7 ancoms N 0 Z Z N + Z
9 eluz2 N + Z Z Z N + Z Z N + Z
10 1 4 8 9 syl3anbrc N 0 Z N + Z Z