Metamath Proof Explorer


Theorem nn0risefaccl

Description: Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion nn0risefaccl A 0 N 0 A N 0

Proof

Step Hyp Ref Expression
1 nn0sscn 0
2 1nn0 1 0
3 nn0mulcl x 0 y 0 x y 0
4 nn0addcl A 0 k 0 A + k 0
5 1 2 3 4 risefaccllem A 0 N 0 A N 0