Database
REAL AND COMPLEX NUMBERS
Order sets
Real number intervals
nn0rp0
Next ⟩
rge0ssre
Metamath Proof Explorer
Ascii
Unicode
Theorem
nn0rp0
Description:
A nonnegative integer is a nonnegative real number.
(Contributed by
AV
, 24-May-2020)
Ref
Expression
Assertion
nn0rp0
⊢
N
∈
ℕ
0
→
N
∈
0
+∞
Proof
Step
Hyp
Ref
Expression
1
nn0re
⊢
N
∈
ℕ
0
→
N
∈
ℝ
2
nn0ge0
⊢
N
∈
ℕ
0
→
0
≤
N
3
elrege0
⊢
N
∈
0
+∞
↔
N
∈
ℝ
∧
0
≤
N
4
1
2
3
sylanbrc
⊢
N
∈
ℕ
0
→
N
∈
0
+∞