Metamath Proof Explorer


Theorem nn0seqcvgd

Description: A strictly-decreasing nonnegative integer sequence with initial term N reaches zero by the N th term. Deduction version. (Contributed by Paul Chapman, 31-Mar-2011)

Ref Expression
Hypotheses nn0seqcvgd.1 φ F : 0 0
nn0seqcvgd.2 φ N = F 0
nn0seqcvgd.3 φ k 0 F k + 1 0 F k + 1 < F k
Assertion nn0seqcvgd φ F N = 0

Proof

Step Hyp Ref Expression
1 nn0seqcvgd.1 φ F : 0 0
2 nn0seqcvgd.2 φ N = F 0
3 nn0seqcvgd.3 φ k 0 F k + 1 0 F k + 1 < F k
4 0nn0 0 0
5 ffvelrn F : 0 0 0 0 F 0 0
6 1 4 5 sylancl φ F 0 0
7 2 6 eqeltrd φ N 0
8 7 nn0red φ N
9 8 leidd φ N N
10 fveq2 m = 0 F m = F 0
11 oveq2 m = 0 N m = N 0
12 10 11 breq12d m = 0 F m N m F 0 N 0
13 12 imbi2d m = 0 φ F m N m φ F 0 N 0
14 fveq2 m = k F m = F k
15 oveq2 m = k N m = N k
16 14 15 breq12d m = k F m N m F k N k
17 16 imbi2d m = k φ F m N m φ F k N k
18 fveq2 m = k + 1 F m = F k + 1
19 oveq2 m = k + 1 N m = N k + 1
20 18 19 breq12d m = k + 1 F m N m F k + 1 N k + 1
21 20 imbi2d m = k + 1 φ F m N m φ F k + 1 N k + 1
22 fveq2 m = N F m = F N
23 oveq2 m = N N m = N N
24 22 23 breq12d m = N F m N m F N N N
25 24 imbi2d m = N φ F m N m φ F N N N
26 2 9 eqbrtrrd φ F 0 N
27 8 recnd φ N
28 27 subid1d φ N 0 = N
29 26 28 breqtrrd φ F 0 N 0
30 29 a1i N 0 φ F 0 N 0
31 nn0re k 0 k
32 posdif k N k < N 0 < N k
33 31 8 32 syl2anr φ k 0 k < N 0 < N k
34 33 adantr φ k 0 F k + 1 = 0 k < N 0 < N k
35 breq1 F k + 1 = 0 F k + 1 < N k 0 < N k
36 35 adantl φ k 0 F k + 1 = 0 F k + 1 < N k 0 < N k
37 peano2nn0 k 0 k + 1 0
38 ffvelrn F : 0 0 k + 1 0 F k + 1 0
39 1 37 38 syl2an φ k 0 F k + 1 0
40 39 nn0zd φ k 0 F k + 1
41 7 nn0zd φ N
42 nn0z k 0 k
43 zsubcl N k N k
44 41 42 43 syl2an φ k 0 N k
45 zltlem1 F k + 1 N k F k + 1 < N k F k + 1 N - k - 1
46 40 44 45 syl2anc φ k 0 F k + 1 < N k F k + 1 N - k - 1
47 nn0cn k 0 k
48 ax-1cn 1
49 subsub4 N k 1 N - k - 1 = N k + 1
50 48 49 mp3an3 N k N - k - 1 = N k + 1
51 27 47 50 syl2an φ k 0 N - k - 1 = N k + 1
52 51 breq2d φ k 0 F k + 1 N - k - 1 F k + 1 N k + 1
53 46 52 bitrd φ k 0 F k + 1 < N k F k + 1 N k + 1
54 53 adantr φ k 0 F k + 1 = 0 F k + 1 < N k F k + 1 N k + 1
55 34 36 54 3bitr2d φ k 0 F k + 1 = 0 k < N F k + 1 N k + 1
56 55 biimpa φ k 0 F k + 1 = 0 k < N F k + 1 N k + 1
57 56 an32s φ k 0 k < N F k + 1 = 0 F k + 1 N k + 1
58 57 a1d φ k 0 k < N F k + 1 = 0 F k N k F k + 1 N k + 1
59 39 nn0red φ k 0 F k + 1
60 1 ffvelrnda φ k 0 F k 0
61 60 nn0red φ k 0 F k
62 44 zred φ k 0 N k
63 ltletr F k + 1 F k N k F k + 1 < F k F k N k F k + 1 < N k
64 59 61 62 63 syl3anc φ k 0 F k + 1 < F k F k N k F k + 1 < N k
65 64 53 sylibd φ k 0 F k + 1 < F k F k N k F k + 1 N k + 1
66 3 65 syland φ k 0 F k + 1 0 F k N k F k + 1 N k + 1
67 66 adantr φ k 0 k < N F k + 1 0 F k N k F k + 1 N k + 1
68 67 expdimp φ k 0 k < N F k + 1 0 F k N k F k + 1 N k + 1
69 58 68 pm2.61dane φ k 0 k < N F k N k F k + 1 N k + 1
70 69 anasss φ k 0 k < N F k N k F k + 1 N k + 1
71 70 expcom k 0 k < N φ F k N k F k + 1 N k + 1
72 71 a2d k 0 k < N φ F k N k φ F k + 1 N k + 1
73 72 3adant1 N 0 k 0 k < N φ F k N k φ F k + 1 N k + 1
74 13 17 21 25 30 73 fnn0ind N 0 N 0 N N φ F N N N
75 7 7 9 74 syl3anc φ φ F N N N
76 75 pm2.43i φ F N N N
77 27 subidd φ N N = 0
78 76 77 breqtrd φ F N 0
79 1 7 ffvelrnd φ F N 0
80 79 nn0ge0d φ 0 F N
81 79 nn0red φ F N
82 0re 0
83 letri3 F N 0 F N = 0 F N 0 0 F N
84 81 82 83 sylancl φ F N = 0 F N 0 0 F N
85 78 80 84 mpbir2and φ F N = 0