Step |
Hyp |
Ref |
Expression |
1 |
|
nn0seqcvgd.1 |
|
2 |
|
nn0seqcvgd.2 |
|
3 |
|
nn0seqcvgd.3 |
|
4 |
|
0nn0 |
|
5 |
|
ffvelrn |
|
6 |
1 4 5
|
sylancl |
|
7 |
2 6
|
eqeltrd |
|
8 |
7
|
nn0red |
|
9 |
8
|
leidd |
|
10 |
|
fveq2 |
|
11 |
|
oveq2 |
|
12 |
10 11
|
breq12d |
|
13 |
12
|
imbi2d |
|
14 |
|
fveq2 |
|
15 |
|
oveq2 |
|
16 |
14 15
|
breq12d |
|
17 |
16
|
imbi2d |
|
18 |
|
fveq2 |
|
19 |
|
oveq2 |
|
20 |
18 19
|
breq12d |
|
21 |
20
|
imbi2d |
|
22 |
|
fveq2 |
|
23 |
|
oveq2 |
|
24 |
22 23
|
breq12d |
|
25 |
24
|
imbi2d |
|
26 |
2 9
|
eqbrtrrd |
|
27 |
8
|
recnd |
|
28 |
27
|
subid1d |
|
29 |
26 28
|
breqtrrd |
|
30 |
29
|
a1i |
|
31 |
|
nn0re |
|
32 |
|
posdif |
|
33 |
31 8 32
|
syl2anr |
|
34 |
33
|
adantr |
|
35 |
|
breq1 |
|
36 |
35
|
adantl |
|
37 |
|
peano2nn0 |
|
38 |
|
ffvelrn |
|
39 |
1 37 38
|
syl2an |
|
40 |
39
|
nn0zd |
|
41 |
7
|
nn0zd |
|
42 |
|
nn0z |
|
43 |
|
zsubcl |
|
44 |
41 42 43
|
syl2an |
|
45 |
|
zltlem1 |
|
46 |
40 44 45
|
syl2anc |
|
47 |
|
nn0cn |
|
48 |
|
ax-1cn |
|
49 |
|
subsub4 |
|
50 |
48 49
|
mp3an3 |
|
51 |
27 47 50
|
syl2an |
|
52 |
51
|
breq2d |
|
53 |
46 52
|
bitrd |
|
54 |
53
|
adantr |
|
55 |
34 36 54
|
3bitr2d |
|
56 |
55
|
biimpa |
|
57 |
56
|
an32s |
|
58 |
57
|
a1d |
|
59 |
39
|
nn0red |
|
60 |
1
|
ffvelrnda |
|
61 |
60
|
nn0red |
|
62 |
44
|
zred |
|
63 |
|
ltletr |
|
64 |
59 61 62 63
|
syl3anc |
|
65 |
64 53
|
sylibd |
|
66 |
3 65
|
syland |
|
67 |
66
|
adantr |
|
68 |
67
|
expdimp |
|
69 |
58 68
|
pm2.61dane |
|
70 |
69
|
anasss |
|
71 |
70
|
expcom |
|
72 |
71
|
a2d |
|
73 |
72
|
3adant1 |
|
74 |
13 17 21 25 30 73
|
fnn0ind |
|
75 |
7 7 9 74
|
syl3anc |
|
76 |
75
|
pm2.43i |
|
77 |
27
|
subidd |
|
78 |
76 77
|
breqtrd |
|
79 |
1 7
|
ffvelrnd |
|
80 |
79
|
nn0ge0d |
|
81 |
79
|
nn0red |
|
82 |
|
0re |
|
83 |
|
letri3 |
|
84 |
81 82 83
|
sylancl |
|
85 |
78 80 84
|
mpbir2and |
|