Metamath Proof Explorer


Theorem nn0sinds

Description: Strong (or "total") induction principle over the nonnegative integers. (Contributed by Scott Fenton, 16-May-2014)

Ref Expression
Hypotheses nn0sinds.1 x = y φ ψ
nn0sinds.2 x = N φ χ
nn0sinds.3 x 0 y 0 x 1 ψ φ
Assertion nn0sinds N 0 χ

Proof

Step Hyp Ref Expression
1 nn0sinds.1 x = y φ ψ
2 nn0sinds.2 x = N φ χ
3 nn0sinds.3 x 0 y 0 x 1 ψ φ
4 elnn0uz N 0 N 0
5 elnn0uz x 0 x 0
6 5 3 sylbir x 0 y 0 x 1 ψ φ
7 1 2 6 uzsinds N 0 χ
8 4 7 sylbi N 0 χ