Metamath Proof Explorer


Theorem nn0split

Description: Express the set of nonnegative integers as the disjoint (see nn0disj ) union of the first N + 1 values and the rest. (Contributed by AV, 8-Nov-2019)

Ref Expression
Assertion nn0split N 0 0 = 0 N N + 1

Proof

Step Hyp Ref Expression
1 nn0uz 0 = 0
2 1 a1i N 0 0 = 0
3 peano2nn0 N 0 N + 1 0
4 3 1 eleqtrdi N 0 N + 1 0
5 uzsplit N + 1 0 0 = 0 N + 1 - 1 N + 1
6 4 5 syl N 0 0 = 0 N + 1 - 1 N + 1
7 nn0cn N 0 N
8 pncan1 N N + 1 - 1 = N
9 7 8 syl N 0 N + 1 - 1 = N
10 9 oveq2d N 0 0 N + 1 - 1 = 0 N
11 10 uneq1d N 0 0 N + 1 - 1 N + 1 = 0 N N + 1
12 2 6 11 3eqtrd N 0 0 = 0 N N + 1