Step |
Hyp |
Ref |
Expression |
1 |
|
cnring |
|
2 |
|
ringcmn |
|
3 |
1 2
|
ax-mp |
|
4 |
|
nn0subm |
|
5 |
|
eqid |
|
6 |
5
|
submcmn |
|
7 |
3 4 6
|
mp2an |
|
8 |
|
nn0ex |
|
9 |
|
eqid |
|
10 |
5 9
|
mgpress |
|
11 |
3 8 10
|
mp2an |
|
12 |
|
nn0sscn |
|
13 |
|
1nn0 |
|
14 |
|
nn0mulcl |
|
15 |
14
|
rgen2 |
|
16 |
9
|
ringmgp |
|
17 |
1 16
|
ax-mp |
|
18 |
|
cnfldbas |
|
19 |
9 18
|
mgpbas |
|
20 |
|
cnfld1 |
|
21 |
9 20
|
ringidval |
|
22 |
|
cnfldmul |
|
23 |
9 22
|
mgpplusg |
|
24 |
19 21 23
|
issubm |
|
25 |
17 24
|
ax-mp |
|
26 |
12 13 15 25
|
mpbir3an |
|
27 |
|
eqid |
|
28 |
27
|
submmnd |
|
29 |
26 28
|
ax-mp |
|
30 |
11 29
|
eqeltrri |
|
31 |
|
simpl |
|
32 |
31
|
nn0cnd |
|
33 |
|
simprl |
|
34 |
33
|
nn0cnd |
|
35 |
|
simprr |
|
36 |
35
|
nn0cnd |
|
37 |
32 34 36
|
adddid |
|
38 |
32 34 36
|
adddird |
|
39 |
37 38
|
jca |
|
40 |
39
|
ralrimivva |
|
41 |
|
nn0cn |
|
42 |
41
|
mul02d |
|
43 |
41
|
mul01d |
|
44 |
40 42 43
|
jca32 |
|
45 |
44
|
rgen |
|
46 |
5 18
|
ressbas2 |
|
47 |
12 46
|
ax-mp |
|
48 |
|
eqid |
|
49 |
|
cnfldadd |
|
50 |
5 49
|
ressplusg |
|
51 |
8 50
|
ax-mp |
|
52 |
5 22
|
ressmulr |
|
53 |
8 52
|
ax-mp |
|
54 |
|
ringmnd |
|
55 |
1 54
|
ax-mp |
|
56 |
|
0nn0 |
|
57 |
|
cnfld0 |
|
58 |
5 18 57
|
ress0g |
|
59 |
55 56 12 58
|
mp3an |
|
60 |
47 48 51 53 59
|
issrg |
|
61 |
7 30 45 60
|
mpbir3an |
|