Metamath Proof Explorer


Theorem nn0srg

Description: The nonnegative integers form a semiring (commutative by subcmn ). (Contributed by Thierry Arnoux, 1-May-2018)

Ref Expression
Assertion nn0srg fld 𝑠 0 SRing

Proof

Step Hyp Ref Expression
1 cnring fld Ring
2 ringcmn fld Ring fld CMnd
3 1 2 ax-mp fld CMnd
4 nn0subm 0 SubMnd fld
5 eqid fld 𝑠 0 = fld 𝑠 0
6 5 submcmn fld CMnd 0 SubMnd fld fld 𝑠 0 CMnd
7 3 4 6 mp2an fld 𝑠 0 CMnd
8 nn0ex 0 V
9 eqid mulGrp fld = mulGrp fld
10 5 9 mgpress fld CMnd 0 V mulGrp fld 𝑠 0 = mulGrp fld 𝑠 0
11 3 8 10 mp2an mulGrp fld 𝑠 0 = mulGrp fld 𝑠 0
12 nn0sscn 0
13 1nn0 1 0
14 nn0mulcl x 0 y 0 x y 0
15 14 rgen2 x 0 y 0 x y 0
16 9 ringmgp fld Ring mulGrp fld Mnd
17 1 16 ax-mp mulGrp fld Mnd
18 cnfldbas = Base fld
19 9 18 mgpbas = Base mulGrp fld
20 cnfld1 1 = 1 fld
21 9 20 ringidval 1 = 0 mulGrp fld
22 cnfldmul × = fld
23 9 22 mgpplusg × = + mulGrp fld
24 19 21 23 issubm mulGrp fld Mnd 0 SubMnd mulGrp fld 0 1 0 x 0 y 0 x y 0
25 17 24 ax-mp 0 SubMnd mulGrp fld 0 1 0 x 0 y 0 x y 0
26 12 13 15 25 mpbir3an 0 SubMnd mulGrp fld
27 eqid mulGrp fld 𝑠 0 = mulGrp fld 𝑠 0
28 27 submmnd 0 SubMnd mulGrp fld mulGrp fld 𝑠 0 Mnd
29 26 28 ax-mp mulGrp fld 𝑠 0 Mnd
30 11 29 eqeltrri mulGrp fld 𝑠 0 Mnd
31 simpl x 0 y 0 z 0 x 0
32 31 nn0cnd x 0 y 0 z 0 x
33 simprl x 0 y 0 z 0 y 0
34 33 nn0cnd x 0 y 0 z 0 y
35 simprr x 0 y 0 z 0 z 0
36 35 nn0cnd x 0 y 0 z 0 z
37 32 34 36 adddid x 0 y 0 z 0 x y + z = x y + x z
38 32 34 36 adddird x 0 y 0 z 0 x + y z = x z + y z
39 37 38 jca x 0 y 0 z 0 x y + z = x y + x z x + y z = x z + y z
40 39 ralrimivva x 0 y 0 z 0 x y + z = x y + x z x + y z = x z + y z
41 nn0cn x 0 x
42 41 mul02d x 0 0 x = 0
43 41 mul01d x 0 x 0 = 0
44 40 42 43 jca32 x 0 y 0 z 0 x y + z = x y + x z x + y z = x z + y z 0 x = 0 x 0 = 0
45 44 rgen x 0 y 0 z 0 x y + z = x y + x z x + y z = x z + y z 0 x = 0 x 0 = 0
46 5 18 ressbas2 0 0 = Base fld 𝑠 0
47 12 46 ax-mp 0 = Base fld 𝑠 0
48 eqid mulGrp fld 𝑠 0 = mulGrp fld 𝑠 0
49 cnfldadd + = + fld
50 5 49 ressplusg 0 V + = + fld 𝑠 0
51 8 50 ax-mp + = + fld 𝑠 0
52 5 22 ressmulr 0 V × = fld 𝑠 0
53 8 52 ax-mp × = fld 𝑠 0
54 ringmnd fld Ring fld Mnd
55 1 54 ax-mp fld Mnd
56 0nn0 0 0
57 cnfld0 0 = 0 fld
58 5 18 57 ress0g fld Mnd 0 0 0 0 = 0 fld 𝑠 0
59 55 56 12 58 mp3an 0 = 0 fld 𝑠 0
60 47 48 51 53 59 issrg fld 𝑠 0 SRing fld 𝑠 0 CMnd mulGrp fld 𝑠 0 Mnd x 0 y 0 z 0 x y + z = x y + x z x + y z = x z + y z 0 x = 0 x 0 = 0
61 7 30 45 60 mpbir3an fld 𝑠 0 SRing