Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Peano's postulates
nn0suc
Next ⟩
Finite induction (for finite ordinals)
Metamath Proof Explorer
Ascii
Unicode
Theorem
nn0suc
Description:
A natural number is either 0 or a successor.
(Contributed by
NM
, 27-May-1998)
Ref
Expression
Assertion
nn0suc
⊢
A
∈
ω
→
A
=
∅
∨
∃
x
∈
ω
A
=
suc
⁡
x
Proof
Step
Hyp
Ref
Expression
1
df-ne
⊢
A
≠
∅
↔
¬
A
=
∅
2
nnsuc
⊢
A
∈
ω
∧
A
≠
∅
→
∃
x
∈
ω
A
=
suc
⁡
x
3
1
2
sylan2br
⊢
A
∈
ω
∧
¬
A
=
∅
→
∃
x
∈
ω
A
=
suc
⁡
x
4
3
ex
⊢
A
∈
ω
→
¬
A
=
∅
→
∃
x
∈
ω
A
=
suc
⁡
x
5
4
orrd
⊢
A
∈
ω
→
A
=
∅
∨
∃
x
∈
ω
A
=
suc
⁡
x