Metamath Proof Explorer


Theorem nn1m1nn

Description: Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion nn1m1nn A A = 1 A 1

Proof

Step Hyp Ref Expression
1 orc x = 1 x = 1 x 1
2 1cnd x = 1 1
3 1 2 2thd x = 1 x = 1 x 1 1
4 eqeq1 x = y x = 1 y = 1
5 oveq1 x = y x 1 = y 1
6 5 eleq1d x = y x 1 y 1
7 4 6 orbi12d x = y x = 1 x 1 y = 1 y 1
8 eqeq1 x = y + 1 x = 1 y + 1 = 1
9 oveq1 x = y + 1 x 1 = y + 1 - 1
10 9 eleq1d x = y + 1 x 1 y + 1 - 1
11 8 10 orbi12d x = y + 1 x = 1 x 1 y + 1 = 1 y + 1 - 1
12 eqeq1 x = A x = 1 A = 1
13 oveq1 x = A x 1 = A 1
14 13 eleq1d x = A x 1 A 1
15 12 14 orbi12d x = A x = 1 x 1 A = 1 A 1
16 ax-1cn 1
17 nncn y y
18 pncan y 1 y + 1 - 1 = y
19 17 16 18 sylancl y y + 1 - 1 = y
20 id y y
21 19 20 eqeltrd y y + 1 - 1
22 21 olcd y y + 1 = 1 y + 1 - 1
23 22 a1d y y = 1 y 1 y + 1 = 1 y + 1 - 1
24 3 7 11 15 16 23 nnind A A = 1 A 1