Metamath Proof Explorer


Theorem nn1suc

Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004) (Revised by Mario Carneiro, 16-May-2014)

Ref Expression
Hypotheses nn1suc.1 x = 1 φ ψ
nn1suc.3 x = y + 1 φ χ
nn1suc.4 x = A φ θ
nn1suc.5 ψ
nn1suc.6 y χ
Assertion nn1suc A θ

Proof

Step Hyp Ref Expression
1 nn1suc.1 x = 1 φ ψ
2 nn1suc.3 x = y + 1 φ χ
3 nn1suc.4 x = A φ θ
4 nn1suc.5 ψ
5 nn1suc.6 y χ
6 1ex 1 V
7 6 1 sbcie [˙ 1 / x]˙ φ ψ
8 4 7 mpbir [˙ 1 / x]˙ φ
9 1nn 1
10 eleq1 A = 1 A 1
11 9 10 mpbiri A = 1 A
12 3 sbcieg A [˙A / x]˙ φ θ
13 11 12 syl A = 1 [˙A / x]˙ φ θ
14 dfsbcq A = 1 [˙A / x]˙ φ [˙ 1 / x]˙ φ
15 13 14 bitr3d A = 1 θ [˙ 1 / x]˙ φ
16 8 15 mpbiri A = 1 θ
17 16 a1i A A = 1 θ
18 ovex y + 1 V
19 18 2 sbcie [˙y + 1 / x]˙ φ χ
20 oveq1 y = A 1 y + 1 = A - 1 + 1
21 20 sbceq1d y = A 1 [˙y + 1 / x]˙ φ [˙A - 1 + 1 / x]˙ φ
22 19 21 bitr3id y = A 1 χ [˙A - 1 + 1 / x]˙ φ
23 22 5 vtoclga A 1 [˙A - 1 + 1 / x]˙ φ
24 nncn A A
25 ax-1cn 1
26 npcan A 1 A - 1 + 1 = A
27 24 25 26 sylancl A A - 1 + 1 = A
28 27 sbceq1d A [˙A - 1 + 1 / x]˙ φ [˙A / x]˙ φ
29 28 12 bitrd A [˙A - 1 + 1 / x]˙ φ θ
30 23 29 syl5ib A A 1 θ
31 nn1m1nn A A = 1 A 1
32 17 30 31 mpjaod A θ