Metamath Proof Explorer


Theorem nn2ge

Description: There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999)

Ref Expression
Assertion nn2ge A B x A x B x

Proof

Step Hyp Ref Expression
1 nnre A A
2 1 adantr A B A
3 nnre B B
4 3 adantl A B B
5 leid B B B
6 5 anim1ci B A B A B B B
7 3 6 sylan B A B A B B B
8 breq2 x = B A x A B
9 breq2 x = B B x B B
10 8 9 anbi12d x = B A x B x A B B B
11 10 rspcev B A B B B x A x B x
12 7 11 syldan B A B x A x B x
13 12 adantll A B A B x A x B x
14 leid A A A
15 14 anim1i A B A A A B A
16 1 15 sylan A B A A A B A
17 breq2 x = A A x A A
18 breq2 x = A B x B A
19 17 18 anbi12d x = A A x B x A A B A
20 19 rspcev A A A B A x A x B x
21 16 20 syldan A B A x A x B x
22 21 adantlr A B B A x A x B x
23 2 4 13 22 lecasei A B x A x B x