| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
|
id |
|
| 3 |
1 2
|
eqeq12d |
|
| 4 |
|
oveq2 |
|
| 5 |
|
id |
|
| 6 |
4 5
|
eqeq12d |
|
| 7 |
|
oveq2 |
|
| 8 |
|
id |
|
| 9 |
7 8
|
eqeq12d |
|
| 10 |
|
oveq2 |
|
| 11 |
|
id |
|
| 12 |
10 11
|
eqeq12d |
|
| 13 |
|
0elon |
|
| 14 |
|
oa0 |
|
| 15 |
13 14
|
ax-mp |
|
| 16 |
|
peano1 |
|
| 17 |
|
nnasuc |
|
| 18 |
16 17
|
mpan |
|
| 19 |
|
suceq |
|
| 20 |
19
|
eqeq2d |
|
| 21 |
18 20
|
syl5ibcom |
|
| 22 |
3 6 9 12 15 21
|
finds |
|