Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
oveq2 |
|
3 |
2
|
oveq2d |
|
4 |
1 3
|
eqeq12d |
|
5 |
4
|
imbi2d |
|
6 |
|
oveq2 |
|
7 |
|
oveq2 |
|
8 |
7
|
oveq2d |
|
9 |
6 8
|
eqeq12d |
|
10 |
|
oveq2 |
|
11 |
|
oveq2 |
|
12 |
11
|
oveq2d |
|
13 |
10 12
|
eqeq12d |
|
14 |
|
oveq2 |
|
15 |
|
oveq2 |
|
16 |
15
|
oveq2d |
|
17 |
14 16
|
eqeq12d |
|
18 |
|
nnacl |
|
19 |
|
nna0 |
|
20 |
18 19
|
syl |
|
21 |
|
nna0 |
|
22 |
21
|
oveq2d |
|
23 |
22
|
adantl |
|
24 |
20 23
|
eqtr4d |
|
25 |
|
suceq |
|
26 |
|
nnasuc |
|
27 |
18 26
|
sylan |
|
28 |
|
nnasuc |
|
29 |
28
|
oveq2d |
|
30 |
29
|
adantl |
|
31 |
|
nnacl |
|
32 |
|
nnasuc |
|
33 |
31 32
|
sylan2 |
|
34 |
30 33
|
eqtrd |
|
35 |
34
|
anassrs |
|
36 |
27 35
|
eqeq12d |
|
37 |
25 36
|
syl5ibr |
|
38 |
37
|
expcom |
|
39 |
9 13 17 24 38
|
finds2 |
|
40 |
5 39
|
vtoclga |
|
41 |
40
|
com12 |
|
42 |
41
|
3impia |
|