| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  | 
						
							| 2 |  | oveq2 |  | 
						
							| 3 | 2 | oveq2d |  | 
						
							| 4 | 1 3 | eqeq12d |  | 
						
							| 5 | 4 | imbi2d |  | 
						
							| 6 |  | oveq2 |  | 
						
							| 7 |  | oveq2 |  | 
						
							| 8 | 7 | oveq2d |  | 
						
							| 9 | 6 8 | eqeq12d |  | 
						
							| 10 |  | oveq2 |  | 
						
							| 11 |  | oveq2 |  | 
						
							| 12 | 11 | oveq2d |  | 
						
							| 13 | 10 12 | eqeq12d |  | 
						
							| 14 |  | oveq2 |  | 
						
							| 15 |  | oveq2 |  | 
						
							| 16 | 15 | oveq2d |  | 
						
							| 17 | 14 16 | eqeq12d |  | 
						
							| 18 |  | nnacl |  | 
						
							| 19 |  | nna0 |  | 
						
							| 20 | 18 19 | syl |  | 
						
							| 21 |  | nna0 |  | 
						
							| 22 | 21 | oveq2d |  | 
						
							| 23 | 22 | adantl |  | 
						
							| 24 | 20 23 | eqtr4d |  | 
						
							| 25 |  | suceq |  | 
						
							| 26 |  | nnasuc |  | 
						
							| 27 | 18 26 | sylan |  | 
						
							| 28 |  | nnasuc |  | 
						
							| 29 | 28 | oveq2d |  | 
						
							| 30 | 29 | adantl |  | 
						
							| 31 |  | nnacl |  | 
						
							| 32 |  | nnasuc |  | 
						
							| 33 | 31 32 | sylan2 |  | 
						
							| 34 | 30 33 | eqtrd |  | 
						
							| 35 | 34 | anassrs |  | 
						
							| 36 | 27 35 | eqeq12d |  | 
						
							| 37 | 25 36 | imbitrrid |  | 
						
							| 38 | 37 | expcom |  | 
						
							| 39 | 9 13 17 24 38 | finds2 |  | 
						
							| 40 | 5 39 | vtoclga |  | 
						
							| 41 | 40 | com12 |  | 
						
							| 42 | 41 | 3impia |  |