| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|
| 2 |
|
oveq2 |
|
| 3 |
1 2
|
eqeq12d |
|
| 4 |
3
|
imbi2d |
|
| 5 |
|
oveq1 |
|
| 6 |
|
oveq2 |
|
| 7 |
5 6
|
eqeq12d |
|
| 8 |
|
oveq1 |
|
| 9 |
|
oveq2 |
|
| 10 |
8 9
|
eqeq12d |
|
| 11 |
|
oveq1 |
|
| 12 |
|
oveq2 |
|
| 13 |
11 12
|
eqeq12d |
|
| 14 |
|
nna0r |
|
| 15 |
|
nna0 |
|
| 16 |
14 15
|
eqtr4d |
|
| 17 |
|
suceq |
|
| 18 |
|
oveq2 |
|
| 19 |
|
oveq2 |
|
| 20 |
|
suceq |
|
| 21 |
19 20
|
syl |
|
| 22 |
18 21
|
eqeq12d |
|
| 23 |
22
|
imbi2d |
|
| 24 |
|
oveq2 |
|
| 25 |
|
oveq2 |
|
| 26 |
|
suceq |
|
| 27 |
25 26
|
syl |
|
| 28 |
24 27
|
eqeq12d |
|
| 29 |
|
oveq2 |
|
| 30 |
|
oveq2 |
|
| 31 |
|
suceq |
|
| 32 |
30 31
|
syl |
|
| 33 |
29 32
|
eqeq12d |
|
| 34 |
|
oveq2 |
|
| 35 |
|
oveq2 |
|
| 36 |
|
suceq |
|
| 37 |
35 36
|
syl |
|
| 38 |
34 37
|
eqeq12d |
|
| 39 |
|
peano2 |
|
| 40 |
|
nna0 |
|
| 41 |
39 40
|
syl |
|
| 42 |
|
nna0 |
|
| 43 |
|
suceq |
|
| 44 |
42 43
|
syl |
|
| 45 |
41 44
|
eqtr4d |
|
| 46 |
|
suceq |
|
| 47 |
|
nnasuc |
|
| 48 |
39 47
|
sylan |
|
| 49 |
|
nnasuc |
|
| 50 |
|
suceq |
|
| 51 |
49 50
|
syl |
|
| 52 |
48 51
|
eqeq12d |
|
| 53 |
46 52
|
imbitrrid |
|
| 54 |
53
|
expcom |
|
| 55 |
28 33 38 45 54
|
finds2 |
|
| 56 |
23 55
|
vtoclga |
|
| 57 |
56
|
imp |
|
| 58 |
|
nnasuc |
|
| 59 |
57 58
|
eqeq12d |
|
| 60 |
17 59
|
imbitrrid |
|
| 61 |
60
|
expcom |
|
| 62 |
7 10 13 16 61
|
finds2 |
|
| 63 |
4 62
|
vtoclga |
|
| 64 |
63
|
imp |
|