Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|
2 |
|
oveq2 |
|
3 |
1 2
|
eqeq12d |
|
4 |
3
|
imbi2d |
|
5 |
|
oveq1 |
|
6 |
|
oveq2 |
|
7 |
5 6
|
eqeq12d |
|
8 |
|
oveq1 |
|
9 |
|
oveq2 |
|
10 |
8 9
|
eqeq12d |
|
11 |
|
oveq1 |
|
12 |
|
oveq2 |
|
13 |
11 12
|
eqeq12d |
|
14 |
|
nna0r |
|
15 |
|
nna0 |
|
16 |
14 15
|
eqtr4d |
|
17 |
|
suceq |
|
18 |
|
oveq2 |
|
19 |
|
oveq2 |
|
20 |
|
suceq |
|
21 |
19 20
|
syl |
|
22 |
18 21
|
eqeq12d |
|
23 |
22
|
imbi2d |
|
24 |
|
oveq2 |
|
25 |
|
oveq2 |
|
26 |
|
suceq |
|
27 |
25 26
|
syl |
|
28 |
24 27
|
eqeq12d |
|
29 |
|
oveq2 |
|
30 |
|
oveq2 |
|
31 |
|
suceq |
|
32 |
30 31
|
syl |
|
33 |
29 32
|
eqeq12d |
|
34 |
|
oveq2 |
|
35 |
|
oveq2 |
|
36 |
|
suceq |
|
37 |
35 36
|
syl |
|
38 |
34 37
|
eqeq12d |
|
39 |
|
peano2 |
|
40 |
|
nna0 |
|
41 |
39 40
|
syl |
|
42 |
|
nna0 |
|
43 |
|
suceq |
|
44 |
42 43
|
syl |
|
45 |
41 44
|
eqtr4d |
|
46 |
|
suceq |
|
47 |
|
nnasuc |
|
48 |
39 47
|
sylan |
|
49 |
|
nnasuc |
|
50 |
|
suceq |
|
51 |
49 50
|
syl |
|
52 |
48 51
|
eqeq12d |
|
53 |
46 52
|
syl5ibr |
|
54 |
53
|
expcom |
|
55 |
28 33 38 45 54
|
finds2 |
|
56 |
23 55
|
vtoclga |
|
57 |
56
|
imp |
|
58 |
|
nnasuc |
|
59 |
57 58
|
eqeq12d |
|
60 |
17 59
|
syl5ibr |
|
61 |
60
|
expcom |
|
62 |
7 10 13 16 61
|
finds2 |
|
63 |
4 62
|
vtoclga |
|
64 |
63
|
imp |
|