Metamath Proof Explorer


Theorem nnaddcld

Description: Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses nnge1d.1 φ A
nnmulcld.2 φ B
Assertion nnaddcld φ A + B

Proof

Step Hyp Ref Expression
1 nnge1d.1 φ A
2 nnmulcld.2 φ B
3 nnaddcl A B A + B
4 1 2 3 syl2anc φ A + B