Metamath Proof Explorer


Theorem nnaddm1cl

Description: Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003) (Proof shortened by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion nnaddm1cl A B A + B - 1

Proof

Step Hyp Ref Expression
1 nncn A A
2 nncn B B
3 ax-1cn 1
4 addsub A B 1 A + B - 1 = A - 1 + B
5 3 4 mp3an3 A B A + B - 1 = A - 1 + B
6 1 2 5 syl2an A B A + B - 1 = A - 1 + B
7 nnm1nn0 A A 1 0
8 nn0nnaddcl A 1 0 B A - 1 + B
9 7 8 sylan A B A - 1 + B
10 6 9 eqeltrd A B A + B - 1