Metamath Proof Explorer


Theorem nnaord

Description: Ordering property of addition. Proposition 8.4 of TakeutiZaring p. 58, limited to natural numbers, and its converse. (Contributed by NM, 7-Mar-1996) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion nnaord A ω B ω C ω A B C + 𝑜 A C + 𝑜 B

Proof

Step Hyp Ref Expression
1 nnaordi B ω C ω A B C + 𝑜 A C + 𝑜 B
2 1 3adant1 A ω B ω C ω A B C + 𝑜 A C + 𝑜 B
3 oveq2 A = B C + 𝑜 A = C + 𝑜 B
4 3 a1i A ω B ω C ω A = B C + 𝑜 A = C + 𝑜 B
5 nnaordi A ω C ω B A C + 𝑜 B C + 𝑜 A
6 5 3adant2 A ω B ω C ω B A C + 𝑜 B C + 𝑜 A
7 4 6 orim12d A ω B ω C ω A = B B A C + 𝑜 A = C + 𝑜 B C + 𝑜 B C + 𝑜 A
8 7 con3d A ω B ω C ω ¬ C + 𝑜 A = C + 𝑜 B C + 𝑜 B C + 𝑜 A ¬ A = B B A
9 df-3an A ω B ω C ω A ω B ω C ω
10 ancom A ω B ω C ω C ω A ω B ω
11 anandi C ω A ω B ω C ω A ω C ω B ω
12 9 10 11 3bitri A ω B ω C ω C ω A ω C ω B ω
13 nnacl C ω A ω C + 𝑜 A ω
14 nnord C + 𝑜 A ω Ord C + 𝑜 A
15 13 14 syl C ω A ω Ord C + 𝑜 A
16 nnacl C ω B ω C + 𝑜 B ω
17 nnord C + 𝑜 B ω Ord C + 𝑜 B
18 16 17 syl C ω B ω Ord C + 𝑜 B
19 15 18 anim12i C ω A ω C ω B ω Ord C + 𝑜 A Ord C + 𝑜 B
20 12 19 sylbi A ω B ω C ω Ord C + 𝑜 A Ord C + 𝑜 B
21 ordtri2 Ord C + 𝑜 A Ord C + 𝑜 B C + 𝑜 A C + 𝑜 B ¬ C + 𝑜 A = C + 𝑜 B C + 𝑜 B C + 𝑜 A
22 20 21 syl A ω B ω C ω C + 𝑜 A C + 𝑜 B ¬ C + 𝑜 A = C + 𝑜 B C + 𝑜 B C + 𝑜 A
23 nnord A ω Ord A
24 nnord B ω Ord B
25 23 24 anim12i A ω B ω Ord A Ord B
26 25 3adant3 A ω B ω C ω Ord A Ord B
27 ordtri2 Ord A Ord B A B ¬ A = B B A
28 26 27 syl A ω B ω C ω A B ¬ A = B B A
29 8 22 28 3imtr4d A ω B ω C ω C + 𝑜 A C + 𝑜 B A B
30 2 29 impbid A ω B ω C ω A B C + 𝑜 A C + 𝑜 B