| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn |
|
| 2 |
1
|
ancoms |
|
| 3 |
2
|
adantll |
|
| 4 |
|
nnord |
|
| 5 |
|
ordsucss |
|
| 6 |
4 5
|
syl |
|
| 7 |
6
|
ad2antlr |
|
| 8 |
|
peano2b |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
sseq2d |
|
| 11 |
10
|
imbi2d |
|
| 12 |
|
oveq2 |
|
| 13 |
12
|
sseq2d |
|
| 14 |
13
|
imbi2d |
|
| 15 |
|
oveq2 |
|
| 16 |
15
|
sseq2d |
|
| 17 |
16
|
imbi2d |
|
| 18 |
|
oveq2 |
|
| 19 |
18
|
sseq2d |
|
| 20 |
19
|
imbi2d |
|
| 21 |
|
ssid |
|
| 22 |
21
|
2a1i |
|
| 23 |
|
sssucid |
|
| 24 |
|
sstr2 |
|
| 25 |
23 24
|
mpi |
|
| 26 |
|
nnasuc |
|
| 27 |
26
|
ancoms |
|
| 28 |
27
|
sseq2d |
|
| 29 |
25 28
|
imbitrrid |
|
| 30 |
29
|
ex |
|
| 31 |
30
|
ad2antrr |
|
| 32 |
31
|
a2d |
|
| 33 |
11 14 17 20 22 32
|
findsg |
|
| 34 |
33
|
exp31 |
|
| 35 |
8 34
|
biimtrid |
|
| 36 |
35
|
com4r |
|
| 37 |
36
|
imp31 |
|
| 38 |
|
nnasuc |
|
| 39 |
38
|
sseq1d |
|
| 40 |
|
ovex |
|
| 41 |
|
sucssel |
|
| 42 |
40 41
|
ax-mp |
|
| 43 |
39 42
|
biimtrdi |
|
| 44 |
43
|
adantlr |
|
| 45 |
7 37 44
|
3syld |
|
| 46 |
45
|
imp |
|
| 47 |
46
|
an32s |
|
| 48 |
3 47
|
mpdan |
|
| 49 |
48
|
ex |
|
| 50 |
49
|
ancoms |
|