Metamath Proof Explorer


Theorem nnaordi

Description: Ordering property of addition. Proposition 8.4 of TakeutiZaring p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion nnaordi B ω C ω A B C + 𝑜 A C + 𝑜 B

Proof

Step Hyp Ref Expression
1 elnn A B B ω A ω
2 1 ancoms B ω A B A ω
3 2 adantll C ω B ω A B A ω
4 nnord B ω Ord B
5 ordsucss Ord B A B suc A B
6 4 5 syl B ω A B suc A B
7 6 ad2antlr C ω B ω A ω A B suc A B
8 peano2b A ω suc A ω
9 oveq2 x = suc A C + 𝑜 x = C + 𝑜 suc A
10 9 sseq2d x = suc A C + 𝑜 suc A C + 𝑜 x C + 𝑜 suc A C + 𝑜 suc A
11 10 imbi2d x = suc A C ω C + 𝑜 suc A C + 𝑜 x C ω C + 𝑜 suc A C + 𝑜 suc A
12 oveq2 x = y C + 𝑜 x = C + 𝑜 y
13 12 sseq2d x = y C + 𝑜 suc A C + 𝑜 x C + 𝑜 suc A C + 𝑜 y
14 13 imbi2d x = y C ω C + 𝑜 suc A C + 𝑜 x C ω C + 𝑜 suc A C + 𝑜 y
15 oveq2 x = suc y C + 𝑜 x = C + 𝑜 suc y
16 15 sseq2d x = suc y C + 𝑜 suc A C + 𝑜 x C + 𝑜 suc A C + 𝑜 suc y
17 16 imbi2d x = suc y C ω C + 𝑜 suc A C + 𝑜 x C ω C + 𝑜 suc A C + 𝑜 suc y
18 oveq2 x = B C + 𝑜 x = C + 𝑜 B
19 18 sseq2d x = B C + 𝑜 suc A C + 𝑜 x C + 𝑜 suc A C + 𝑜 B
20 19 imbi2d x = B C ω C + 𝑜 suc A C + 𝑜 x C ω C + 𝑜 suc A C + 𝑜 B
21 ssid C + 𝑜 suc A C + 𝑜 suc A
22 21 2a1i suc A ω C ω C + 𝑜 suc A C + 𝑜 suc A
23 sssucid C + 𝑜 y suc C + 𝑜 y
24 sstr2 C + 𝑜 suc A C + 𝑜 y C + 𝑜 y suc C + 𝑜 y C + 𝑜 suc A suc C + 𝑜 y
25 23 24 mpi C + 𝑜 suc A C + 𝑜 y C + 𝑜 suc A suc C + 𝑜 y
26 nnasuc C ω y ω C + 𝑜 suc y = suc C + 𝑜 y
27 26 ancoms y ω C ω C + 𝑜 suc y = suc C + 𝑜 y
28 27 sseq2d y ω C ω C + 𝑜 suc A C + 𝑜 suc y C + 𝑜 suc A suc C + 𝑜 y
29 25 28 syl5ibr y ω C ω C + 𝑜 suc A C + 𝑜 y C + 𝑜 suc A C + 𝑜 suc y
30 29 ex y ω C ω C + 𝑜 suc A C + 𝑜 y C + 𝑜 suc A C + 𝑜 suc y
31 30 ad2antrr y ω suc A ω suc A y C ω C + 𝑜 suc A C + 𝑜 y C + 𝑜 suc A C + 𝑜 suc y
32 31 a2d y ω suc A ω suc A y C ω C + 𝑜 suc A C + 𝑜 y C ω C + 𝑜 suc A C + 𝑜 suc y
33 11 14 17 20 22 32 findsg B ω suc A ω suc A B C ω C + 𝑜 suc A C + 𝑜 B
34 33 exp31 B ω suc A ω suc A B C ω C + 𝑜 suc A C + 𝑜 B
35 8 34 syl5bi B ω A ω suc A B C ω C + 𝑜 suc A C + 𝑜 B
36 35 com4r C ω B ω A ω suc A B C + 𝑜 suc A C + 𝑜 B
37 36 imp31 C ω B ω A ω suc A B C + 𝑜 suc A C + 𝑜 B
38 nnasuc C ω A ω C + 𝑜 suc A = suc C + 𝑜 A
39 38 sseq1d C ω A ω C + 𝑜 suc A C + 𝑜 B suc C + 𝑜 A C + 𝑜 B
40 ovex C + 𝑜 A V
41 sucssel C + 𝑜 A V suc C + 𝑜 A C + 𝑜 B C + 𝑜 A C + 𝑜 B
42 40 41 ax-mp suc C + 𝑜 A C + 𝑜 B C + 𝑜 A C + 𝑜 B
43 39 42 syl6bi C ω A ω C + 𝑜 suc A C + 𝑜 B C + 𝑜 A C + 𝑜 B
44 43 adantlr C ω B ω A ω C + 𝑜 suc A C + 𝑜 B C + 𝑜 A C + 𝑜 B
45 7 37 44 3syld C ω B ω A ω A B C + 𝑜 A C + 𝑜 B
46 45 imp C ω B ω A ω A B C + 𝑜 A C + 𝑜 B
47 46 an32s C ω B ω A B A ω C + 𝑜 A C + 𝑜 B
48 3 47 mpdan C ω B ω A B C + 𝑜 A C + 𝑜 B
49 48 ex C ω B ω A B C + 𝑜 A C + 𝑜 B
50 49 ancoms B ω C ω A B C + 𝑜 A C + 𝑜 B