Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Natural number arithmetic
nnaordr
Next ⟩
nnawordi
Metamath Proof Explorer
Ascii
Unicode
Theorem
nnaordr
Description:
Ordering property of addition of natural numbers.
(Contributed by
NM
, 9-Nov-2002)
Ref
Expression
Assertion
nnaordr
⊢
A
∈
ω
∧
B
∈
ω
∧
C
∈
ω
→
A
∈
B
↔
A
+
𝑜
C
∈
B
+
𝑜
C
Proof
Step
Hyp
Ref
Expression
1
nnaord
⊢
A
∈
ω
∧
B
∈
ω
∧
C
∈
ω
→
A
∈
B
↔
C
+
𝑜
A
∈
C
+
𝑜
B
2
nnacom
⊢
C
∈
ω
∧
A
∈
ω
→
C
+
𝑜
A
=
A
+
𝑜
C
3
2
ancoms
⊢
A
∈
ω
∧
C
∈
ω
→
C
+
𝑜
A
=
A
+
𝑜
C
4
3
3adant2
⊢
A
∈
ω
∧
B
∈
ω
∧
C
∈
ω
→
C
+
𝑜
A
=
A
+
𝑜
C
5
nnacom
⊢
C
∈
ω
∧
B
∈
ω
→
C
+
𝑜
B
=
B
+
𝑜
C
6
5
ancoms
⊢
B
∈
ω
∧
C
∈
ω
→
C
+
𝑜
B
=
B
+
𝑜
C
7
6
3adant1
⊢
A
∈
ω
∧
B
∈
ω
∧
C
∈
ω
→
C
+
𝑜
B
=
B
+
𝑜
C
8
4
7
eleq12d
⊢
A
∈
ω
∧
B
∈
ω
∧
C
∈
ω
→
C
+
𝑜
A
∈
C
+
𝑜
B
↔
A
+
𝑜
C
∈
B
+
𝑜
C
9
1
8
bitrd
⊢
A
∈
ω
∧
B
∈
ω
∧
C
∈
ω
→
A
∈
B
↔
A
+
𝑜
C
∈
B
+
𝑜
C