Metamath Proof Explorer


Theorem nnaordr

Description: Ordering property of addition of natural numbers. (Contributed by NM, 9-Nov-2002)

Ref Expression
Assertion nnaordr A ω B ω C ω A B A + 𝑜 C B + 𝑜 C

Proof

Step Hyp Ref Expression
1 nnaord A ω B ω C ω A B C + 𝑜 A C + 𝑜 B
2 nnacom C ω A ω C + 𝑜 A = A + 𝑜 C
3 2 ancoms A ω C ω C + 𝑜 A = A + 𝑜 C
4 3 3adant2 A ω B ω C ω C + 𝑜 A = A + 𝑜 C
5 nnacom C ω B ω C + 𝑜 B = B + 𝑜 C
6 5 ancoms B ω C ω C + 𝑜 B = B + 𝑜 C
7 6 3adant1 A ω B ω C ω C + 𝑜 B = B + 𝑜 C
8 4 7 eleq12d A ω B ω C ω C + 𝑜 A C + 𝑜 B A + 𝑜 C B + 𝑜 C
9 1 8 bitrd A ω B ω C ω A B A + 𝑜 C B + 𝑜 C