Metamath Proof Explorer


Theorem nnarcl

Description: Reverse closure law for addition of natural numbers. Exercise 1 of TakeutiZaring p. 62 and its converse. (Contributed by NM, 12-Dec-2004)

Ref Expression
Assertion nnarcl A On B On A + 𝑜 B ω A ω B ω

Proof

Step Hyp Ref Expression
1 oaword1 A On B On A A + 𝑜 B
2 eloni A On Ord A
3 ordom Ord ω
4 ordtr2 Ord A Ord ω A A + 𝑜 B A + 𝑜 B ω A ω
5 2 3 4 sylancl A On A A + 𝑜 B A + 𝑜 B ω A ω
6 5 expd A On A A + 𝑜 B A + 𝑜 B ω A ω
7 6 adantr A On B On A A + 𝑜 B A + 𝑜 B ω A ω
8 1 7 mpd A On B On A + 𝑜 B ω A ω
9 oaword2 B On A On B A + 𝑜 B
10 9 ancoms A On B On B A + 𝑜 B
11 eloni B On Ord B
12 ordtr2 Ord B Ord ω B A + 𝑜 B A + 𝑜 B ω B ω
13 11 3 12 sylancl B On B A + 𝑜 B A + 𝑜 B ω B ω
14 13 expd B On B A + 𝑜 B A + 𝑜 B ω B ω
15 14 adantl A On B On B A + 𝑜 B A + 𝑜 B ω B ω
16 10 15 mpd A On B On A + 𝑜 B ω B ω
17 8 16 jcad A On B On A + 𝑜 B ω A ω B ω
18 nnacl A ω B ω A + 𝑜 B ω
19 17 18 impbid1 A On B On A + 𝑜 B ω A ω B ω