Metamath Proof Explorer


Theorem nnaword

Description: Weak ordering property of addition. (Contributed by NM, 17-Sep-1995) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion nnaword A ω B ω C ω A B C + 𝑜 A C + 𝑜 B

Proof

Step Hyp Ref Expression
1 nnaord B ω A ω C ω B A C + 𝑜 B C + 𝑜 A
2 1 3com12 A ω B ω C ω B A C + 𝑜 B C + 𝑜 A
3 2 notbid A ω B ω C ω ¬ B A ¬ C + 𝑜 B C + 𝑜 A
4 nnord A ω Ord A
5 nnord B ω Ord B
6 ordtri1 Ord A Ord B A B ¬ B A
7 4 5 6 syl2an A ω B ω A B ¬ B A
8 7 3adant3 A ω B ω C ω A B ¬ B A
9 nnacl C ω A ω C + 𝑜 A ω
10 9 ancoms A ω C ω C + 𝑜 A ω
11 10 3adant2 A ω B ω C ω C + 𝑜 A ω
12 nnacl C ω B ω C + 𝑜 B ω
13 12 ancoms B ω C ω C + 𝑜 B ω
14 13 3adant1 A ω B ω C ω C + 𝑜 B ω
15 nnord C + 𝑜 A ω Ord C + 𝑜 A
16 nnord C + 𝑜 B ω Ord C + 𝑜 B
17 ordtri1 Ord C + 𝑜 A Ord C + 𝑜 B C + 𝑜 A C + 𝑜 B ¬ C + 𝑜 B C + 𝑜 A
18 15 16 17 syl2an C + 𝑜 A ω C + 𝑜 B ω C + 𝑜 A C + 𝑜 B ¬ C + 𝑜 B C + 𝑜 A
19 11 14 18 syl2anc A ω B ω C ω C + 𝑜 A C + 𝑜 B ¬ C + 𝑜 B C + 𝑜 A
20 3 8 19 3bitr4d A ω B ω C ω A B C + 𝑜 A C + 𝑜 B