Metamath Proof Explorer


Theorem nnaword1

Description: Weak ordering property of addition. (Contributed by NM, 9-Nov-2002) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion nnaword1 A ω B ω A A + 𝑜 B

Proof

Step Hyp Ref Expression
1 nna0 A ω A + 𝑜 = A
2 1 adantr A ω B ω A + 𝑜 = A
3 0ss B
4 peano1 ω
5 nnaword ω B ω A ω B A + 𝑜 A + 𝑜 B
6 5 3com13 A ω B ω ω B A + 𝑜 A + 𝑜 B
7 4 6 mp3an3 A ω B ω B A + 𝑜 A + 𝑜 B
8 3 7 mpbii A ω B ω A + 𝑜 A + 𝑜 B
9 2 8 eqsstrrd A ω B ω A A + 𝑜 B