| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
sseq2d |
|
| 3 |
|
simplr |
|
| 4 |
|
nnon |
|
| 5 |
3 4
|
syl |
|
| 6 |
|
simpll |
|
| 7 |
|
nnaword2 |
|
| 8 |
3 6 7
|
syl2anc |
|
| 9 |
2 5 8
|
elrabd |
|
| 10 |
|
intss1 |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
ssrab2 |
|
| 13 |
9
|
ne0d |
|
| 14 |
|
oninton |
|
| 15 |
12 13 14
|
sylancr |
|
| 16 |
|
eloni |
|
| 17 |
15 16
|
syl |
|
| 18 |
|
ordom |
|
| 19 |
|
ordtr2 |
|
| 20 |
17 18 19
|
sylancl |
|
| 21 |
11 3 20
|
mp2and |
|
| 22 |
|
nna0 |
|
| 23 |
22
|
ad2antrr |
|
| 24 |
|
simpr |
|
| 25 |
23 24
|
eqsstrd |
|
| 26 |
|
oveq2 |
|
| 27 |
26
|
sseq1d |
|
| 28 |
25 27
|
syl5ibrcom |
|
| 29 |
|
simprr |
|
| 30 |
29
|
oveq2d |
|
| 31 |
6
|
adantr |
|
| 32 |
|
simprl |
|
| 33 |
|
nnasuc |
|
| 34 |
31 32 33
|
syl2anc |
|
| 35 |
30 34
|
eqtrd |
|
| 36 |
|
nnord |
|
| 37 |
3 36
|
syl |
|
| 38 |
37
|
adantr |
|
| 39 |
|
nnon |
|
| 40 |
39
|
adantr |
|
| 41 |
|
vex |
|
| 42 |
41
|
sucid |
|
| 43 |
|
simpr |
|
| 44 |
42 43
|
eleqtrrid |
|
| 45 |
|
oveq2 |
|
| 46 |
45
|
sseq2d |
|
| 47 |
46
|
onnminsb |
|
| 48 |
40 44 47
|
sylc |
|
| 49 |
48
|
adantl |
|
| 50 |
|
nnacl |
|
| 51 |
31 32 50
|
syl2anc |
|
| 52 |
|
nnord |
|
| 53 |
51 52
|
syl |
|
| 54 |
|
ordtri1 |
|
| 55 |
38 53 54
|
syl2anc |
|
| 56 |
55
|
con2bid |
|
| 57 |
49 56
|
mpbird |
|
| 58 |
|
ordsucss |
|
| 59 |
38 57 58
|
sylc |
|
| 60 |
35 59
|
eqsstrd |
|
| 61 |
60
|
rexlimdvaa |
|
| 62 |
|
nn0suc |
|
| 63 |
21 62
|
syl |
|
| 64 |
28 61 63
|
mpjaod |
|
| 65 |
|
onint |
|
| 66 |
12 13 65
|
sylancr |
|
| 67 |
|
nfrab1 |
|
| 68 |
67
|
nfint |
|
| 69 |
|
nfcv |
|
| 70 |
|
nfcv |
|
| 71 |
|
nfcv |
|
| 72 |
|
nfcv |
|
| 73 |
71 72 68
|
nfov |
|
| 74 |
70 73
|
nfss |
|
| 75 |
|
oveq2 |
|
| 76 |
75
|
sseq2d |
|
| 77 |
68 69 74 76
|
elrabf |
|
| 78 |
77
|
simprbi |
|
| 79 |
66 78
|
syl |
|
| 80 |
64 79
|
eqssd |
|
| 81 |
|
oveq2 |
|
| 82 |
81
|
eqeq1d |
|
| 83 |
82
|
rspcev |
|
| 84 |
21 80 83
|
syl2anc |
|
| 85 |
84
|
ex |
|
| 86 |
|
nnaword1 |
|
| 87 |
86
|
adantlr |
|
| 88 |
|
sseq2 |
|
| 89 |
87 88
|
syl5ibcom |
|
| 90 |
89
|
rexlimdva |
|
| 91 |
85 90
|
impbid |
|