Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
sseq2d |
|
3 |
|
simplr |
|
4 |
|
nnon |
|
5 |
3 4
|
syl |
|
6 |
|
simpll |
|
7 |
|
nnaword2 |
|
8 |
3 6 7
|
syl2anc |
|
9 |
2 5 8
|
elrabd |
|
10 |
|
intss1 |
|
11 |
9 10
|
syl |
|
12 |
|
ssrab2 |
|
13 |
9
|
ne0d |
|
14 |
|
oninton |
|
15 |
12 13 14
|
sylancr |
|
16 |
|
eloni |
|
17 |
15 16
|
syl |
|
18 |
|
ordom |
|
19 |
|
ordtr2 |
|
20 |
17 18 19
|
sylancl |
|
21 |
11 3 20
|
mp2and |
|
22 |
|
nna0 |
|
23 |
22
|
ad2antrr |
|
24 |
|
simpr |
|
25 |
23 24
|
eqsstrd |
|
26 |
|
oveq2 |
|
27 |
26
|
sseq1d |
|
28 |
25 27
|
syl5ibrcom |
|
29 |
|
simprr |
|
30 |
29
|
oveq2d |
|
31 |
6
|
adantr |
|
32 |
|
simprl |
|
33 |
|
nnasuc |
|
34 |
31 32 33
|
syl2anc |
|
35 |
30 34
|
eqtrd |
|
36 |
|
nnord |
|
37 |
3 36
|
syl |
|
38 |
37
|
adantr |
|
39 |
|
nnon |
|
40 |
39
|
adantr |
|
41 |
|
vex |
|
42 |
41
|
sucid |
|
43 |
|
simpr |
|
44 |
42 43
|
eleqtrrid |
|
45 |
|
oveq2 |
|
46 |
45
|
sseq2d |
|
47 |
46
|
onnminsb |
|
48 |
40 44 47
|
sylc |
|
49 |
48
|
adantl |
|
50 |
|
nnacl |
|
51 |
31 32 50
|
syl2anc |
|
52 |
|
nnord |
|
53 |
51 52
|
syl |
|
54 |
|
ordtri1 |
|
55 |
38 53 54
|
syl2anc |
|
56 |
55
|
con2bid |
|
57 |
49 56
|
mpbird |
|
58 |
|
ordsucss |
|
59 |
38 57 58
|
sylc |
|
60 |
35 59
|
eqsstrd |
|
61 |
60
|
rexlimdvaa |
|
62 |
|
nn0suc |
|
63 |
21 62
|
syl |
|
64 |
28 61 63
|
mpjaod |
|
65 |
|
onint |
|
66 |
12 13 65
|
sylancr |
|
67 |
|
nfrab1 |
|
68 |
67
|
nfint |
|
69 |
|
nfcv |
|
70 |
|
nfcv |
|
71 |
|
nfcv |
|
72 |
|
nfcv |
|
73 |
71 72 68
|
nfov |
|
74 |
70 73
|
nfss |
|
75 |
|
oveq2 |
|
76 |
75
|
sseq2d |
|
77 |
68 69 74 76
|
elrabf |
|
78 |
77
|
simprbi |
|
79 |
66 78
|
syl |
|
80 |
64 79
|
eqssd |
|
81 |
|
oveq2 |
|
82 |
81
|
eqeq1d |
|
83 |
82
|
rspcev |
|
84 |
21 80 83
|
syl2anc |
|
85 |
84
|
ex |
|
86 |
|
nnaword1 |
|
87 |
86
|
adantlr |
|
88 |
|
sseq2 |
|
89 |
87 88
|
syl5ibcom |
|
90 |
89
|
rexlimdva |
|
91 |
85 90
|
impbid |
|