Metamath Proof Explorer


Theorem nndiv

Description: Two ways to express " A divides B " for positive integers. (Contributed by NM, 3-Feb-2004) (Proof shortened by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion nndiv A B x A x = B B A

Proof

Step Hyp Ref Expression
1 risset B A x x = B A
2 eqcom x = B A B A = x
3 nncn B B
4 3 ad2antlr A B x B
5 nncn A A
6 5 ad2antrr A B x A
7 nncn x x
8 7 adantl A B x x
9 nnne0 A A 0
10 9 ad2antrr A B x A 0
11 4 6 8 10 divmuld A B x B A = x A x = B
12 2 11 syl5bb A B x x = B A A x = B
13 12 rexbidva A B x x = B A x A x = B
14 1 13 bitr2id A B x A x = B B A