Metamath Proof Explorer


Theorem nndivdvds

Description: Strong form of dvdsval2 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion nndivdvds A B B A A B

Proof

Step Hyp Ref Expression
1 nnz B B
2 nnne0 B B 0
3 nnz A A
4 3 adantr A B A
5 dvdsval2 B B 0 A B A A B
6 1 2 4 5 syl2an23an A B B A A B
7 6 anbi1d A B B A 0 < A B A B 0 < A B
8 nnre A A
9 8 adantr A B A
10 nnre B B
11 10 adantl A B B
12 nngt0 A 0 < A
13 12 adantr A B 0 < A
14 nngt0 B 0 < B
15 14 adantl A B 0 < B
16 9 11 13 15 divgt0d A B 0 < A B
17 16 biantrud A B B A B A 0 < A B
18 elnnz A B A B 0 < A B
19 18 a1i A B A B A B 0 < A B
20 7 17 19 3bitr4d A B B A A B