Database
REAL AND COMPLEX NUMBERS
Integer sets
Principle of mathematical induction
nndivre
Next ⟩
nnrecre
Metamath Proof Explorer
Ascii
Unicode
Theorem
nndivre
Description:
The quotient of a real and a positive integer is real.
(Contributed by
NM
, 28-Nov-2008)
Ref
Expression
Assertion
nndivre
⊢
A
∈
ℝ
∧
N
∈
ℕ
→
A
N
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
nnre
⊢
N
∈
ℕ
→
N
∈
ℝ
2
nnne0
⊢
N
∈
ℕ
→
N
≠
0
3
1
2
jca
⊢
N
∈
ℕ
→
N
∈
ℝ
∧
N
≠
0
4
redivcl
⊢
A
∈
ℝ
∧
N
∈
ℝ
∧
N
≠
0
→
A
N
∈
ℝ
5
4
3expb
⊢
A
∈
ℝ
∧
N
∈
ℝ
∧
N
≠
0
→
A
N
∈
ℝ
6
3
5
sylan2
⊢
A
∈
ℝ
∧
N
∈
ℕ
→
A
N
∈
ℝ